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More and more information is being rendered publicly available through open data. Consequently, the need
for private mechanisms is growing. The issue of the privacy-accuracy trade-off is more prominent than ever:
keeping the information private and secure can seriously hamper the performance of queries of interest.
Having perfectly secure open data that no one can interrogate is a paradox against the principles upon
which open data themselves were founded. But how can one test said accuracy and performance? Much like
in Machine Learning, data-sets for benchmarking are becoming necessary. The best one can do without them
is theoretically compare private mechanisms among themselves, while the implications of these theoretical
guarantees in daily practice remain unclear. A preliminary analysis that takes ideas from theory and tries to
identify the characteristics of a potential benchmark is presented in this work.
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1. INTRODUCTION

The revolution in the field of Privacy and Security
started with the groundbreaking work of Shannon [1].
Shannon laid the very first theoretical foundations of
cryptography, introducing the notion of information-
theoretic secrecy. He envisioned a Message Source
and a Key Source. The message was enciphered
using said Key, and then the resulting cryptogram
was sent over a potentially interceptable channel
to the destination. Denoting with M the message,
K the key and E the enciphered message, then
E = f(K,M) for some suitably chosen function
f . He then defined what is known as Perfect
Secrecy. Assuming that all of these objects are
random variables, the objective would be to achieve
the following equality: for a given message m,
PE(m) = PM (m) where PM (m) is the “a priori”
probability of message m while PE(m) represents
the “a posteriori” probability of message m if the
cryptogram E is intercepted. The idea is simple:
if we manage to intercept the cryptogram E, our
probability distribution over the messages should be
identical to the probability distribution we had before,
the prior PM . I.e., the cryptogram is not giving us any
new information on the message. To achieve this
type of secrecy, one needs the (entropy of the) key
to be as large as the (entropy of the) message. Thus,
perfect secrecy comes with a cost that can rarely be

afforded. Relaxations of this notion of secrecy have
been introduced over the years based on Information
Theory [2; 3; 4] and not [5; 6; 7]. The desiderata have
also meaningfully changed and grown. The need
for privacy (rather than simple secrecy) was born to
protect part of the information (personal or sensitive
information, medical data, etc.) while allowing for
the possibility of answering statistical questions on
the data. A general framework in this setting is
represented by Differential Privacy, which enables
to answer aggregate queries about a database
while keeping individual records private. Dozens of
mechanisms inspired by Differential Privacy have
appeared throughout the years, along with several
implementations. Some of these contributions are
purely theoretical, and some are extremely applied.
The two worlds, however, communicate very little, if
at all. The issue has become even more prominent
with the rise of open data: a paradigm that has at
its very core the principle of rendering information
and data public so that anyone can access it through
a variety of queries. This is a firmly applied field
working with a lot of potentially sensitive information.
The default in these settings is to privatise as
much as possible, with the downside of rendering
data effectively useless to any user who might
want to interrogate it. New algorithms that offer
less restrictive guarantees than the privacy/security
approaches mentioned just above are thus being
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built. Some favour the queries, some favour the
privacy, but little to no comparison is being done
for the lack of a framework that allows doing so.
This paper aims at underlining the limitations and
dangers of pursuing the two directions separately.
The questions we will explore are the following:
how can one test the properties of a new private
theoretical/applied framework? How many samples
are needed to guarantee statistical significance? Are
these samples accessible?

2. BACKGROUND

A probabilistic framework will be considered
with a specific focus on Differential Privacy and
Information-theoretic measures of dependence.
Random variables are denoted with capital letters
X,Y,M , realisations of said random variables will
be represented with lower-case letters x, y,m. The
corresponding probability measures will be denoted
with PX , PY , PM .

2.1. Rényi’s Divergences

Introduced by Rényi to generalise the concept
of Entropy and KL-Divergence, the Rényi’s α-
Divergence has found many applications over the
years in hypothesis testing, guessing, and several
others statistical inference problems [8; 9]. It has
several helpful operational interpretations (e.g., the
number of bits by which a mixture of two codes can
be compressed, the cut-off rate in block coding and
hypothesis testing [9; 10]). It can be defined as
follows [9]:
Definition 1. Let (Ω,F ,P), (Ω,F ,Q) be two proba-
bility spaces. Let α > 0 be a positive real different
from 1. Consider a measure µ such that P ≪ µ
and Q ≪ µ (such a measure always exists, e.g.
µ = (P +Q)/2)) and denote with p, q the densities of
P,Q with respect to µ. The α-Divergence of P from
Q is defined as follows:

Dα(P∥Q) =
1

α− 1
log

∫
pαq1−αdµ. (1)

Remark 1. The definition is independent of the
chosen measure µ whenever ∞ > α > 0 and α ̸= 1.
It is indeed possible to show that

∫
pαq1−αdµ =∫ (

q
p

)1−α

dP, and that whenever P ≪ Q or 0 < α <

1 one has that
∫
pαq1−αdµ =

∫ (
p
q

)α
dQ, see [9].

It can be shown that if α > 1 and P ̸≪ Q then
Dα(P∥Q) = ∞. The behaviour of the measure for
α ∈ {0, 1,∞} can be defined by continuity. In par-
ticular, we have that limα→1 Dα(P∥Q) = D(P∥Q),
i.e., the classical Kullback-Leibler divergence. We
refer the reader to [9] for an extensive treatment
of α-Divergences and their properties. One could

also consider other information measures, e.g., f–
Divergences or even measures of dependence like
Sibson’s α-Mutual Information. However, for this
treatise, we will only consider Dα.

2.2. Differential Privacy

The idea behind Differential Privacy is to provide
mechanisms that “obfuscate individual identities”
Definition 2. Let M : Xn → Y be a randomised
algorithm. M is said to be (ϵ, δ)-Differentially Private
if for every S ∈ Y and every pair of vectors xn, x̂n

that differ only in one position:

P(M(xn) ∈ S) ≤ eϵP(M(x̂n) ∈ S) + δ. (2)

We can now clarify what we meant with “obfuscate
individual identities”. Let xn = (x1, . . . , xi, . . . , xn)
and x̂n = (x1, . . . , x̂i, . . . , xn), the two vectors differ
only in the i-th position (all the other xj ’s are
equal). If M is Differentially-Private, we have that the
probability of the output of M when xn is given as an
input is not too far from the probability of the output
of M when x̂n is given as an input. The consequence
of this is: if an adversarial party looks at the outcome
of the algorithm M it cannot decide with too much
certainty whether xi was included in the input or not.
The two outputs are statistically indistinguishable.
When δ = 0 then Definition 2 boils down to ϵ-DP.
Widespread ways of achieving differential privacy
typically require considering functions f : Xn →
R with “bounded sensitivity” (i.e., functions whose
outcomes do not get too far if the inputs are close)
and the addition of Laplacian/Gaussian/Exponential
noise whose variance depends on the sensitivity of
the function f , ϵ and δ. E.g., denoting with ∆f the
sensitivity of f (cf. [5]) then the algorithm M defined
as follows

M(xn) = f(xn) + L, where L ∼ Lap(∆f/ϵ) (3)

is ϵ-DP [5, Theorem 3.6].

3. FROM THEORY TO PRACTICE

3.1. A fair confrontation

Given any mechanism, as easy as an ϵ-DP
algorithm implemented through the addition of
(Laplace/Gaussian) noise, can its performances
be tested in practice? How can one empirically
analyse the privacy-utility trade-off? To do this,
test databases need to be rendered available.
Having access to an ensemble of standardised
data sets would allow for direct comparison of
performances on well-known queries, much like in
the Machine Learning community with MNIST and
other basic data-sets often used as a benchmark
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for new algorithms. Without such a standardised
setting for testing performances, any new algorithmic
breakthrough cannot be easily compared to the
previously existing ones. This discourages new
contributions, especially in bridging the gap between
theory and practice. Most of the literature revolves
around the notion of Differential Privacy [5] ,
Attribute Privacy [6] or the recently defined Pufferfish
Privacy [7]. Whenever a new type of privacy/secrecy
appears (regardless of the literature it is originated
from) if it cannot be directly compared with any
of these DP-based approaches, it is automatically
discredited and set aside. With a standardised
testing and performance evaluation framework,
these new contributions could be directly compared
to others.

3.2. The size of the data-set

The characteristics of an ideal test-set are not
evident a priori. They depend on the type of query
one is trying to render available. The first question
that needs to be asked is: how large should such
a data-set be? The natural response would be: “as
large as possible”. Can one do better?

Denote with Xn the space of data and with Q :
Xn → Rm (with usually m = 1) the query to be
asked on the data-set. Our purpose is to provide
a privacy-enhancing mechanism M : Xn → X̂n

such that if Xn is a data-set that we are willing
to protect, then Q(Xn) is as close as possible to
Q(M(Xn)). The qualifier “as close as possible” can
be defined in a number of ways. E.g., one could
ask for every x ∈ Xn and x̂ ∈ Xn to be such that
N(Q(x) − Q(x̂)) < η for some norm N : Rm → R+

and some η > 0. This would be too restrictive.
Moreover, since we are dealing with random objects,
it is perhaps (more) reasonable to ask for Q(Xn) and
Q(M(Xn)) to be close “in probability” or in expected
value. One would thus focus only on objects with
“large enough probability of occurring” rather than
on every instance xn ∈ Xn. Let us specify this a bit
more.

Denote with Y = M(Xn) then M induces a Markov
Kernel {K(x̂|x) : x ∈ Xn, x̂ ∈ X̂n} and a probability
measure ν over X̂n. This is typically denoted as
ν(x̂) = µK(x̂) =

∑
x µ(x)K(x̂|x).

Assume, as a first step, that our purpose is to
compute some value X̄ that we know we can
get arbitrarily close to in probability, using Q(Xn).
This represents a reasonable assumption, as if
approximating X̄ through Xn is not possible then
applying a privacy-enhancing mechanism would
only make things worse. By enforcing privacy
we are adding noise and obfuscating data, our

performances can only get worse. Thus, assume that

µ
(
|Q(Xn)− X̄| ≥ η

)
≤ fη(n)

with fη(n) decreasing in n for a given η > 0. This
formalises the idea that the more data samples
we see, the better we can estimate X̄. Typical
accuracy requirements ask for fη(n) ≤ δ with δ fixed
beforehand. If fη is invertible, this would immediately
imply that one needs n ≥ f−1

η (δ), thus providing a
lower-bound on the number of samples necessary
to achieve the accuracy η with confidence δ. An
example of this would be the following. Suppose that
Xn is a sequence of iid random variables distributed
according to ξ (thus, µ = ξ⊗n) and that X̄ = Eξ[X].
Assume also that 0 ≤ Xi ≤ 1 almost surely, then
one could pick Q(Xn) = 1

n

∑n
i=1 Xi and have that

fη(n) = 2 exp(−2nη2), i.e.,

µ
(
|Q(Xn)− X̄| ≥ η

)
≤ 2 exp(−2nη2)

[11]. If, for a given η > 0 and δ > 0, the requirement
is that

µ

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X]

∣∣∣∣∣ ≥ η

)
≤ δ

then, to ensure the confidence δ and accuracy η it is
necessary to have a number of samples n such that

n ≥ 1

2η2
log

(
1

δ

)
. (4)

If for a given query Q and accuracy η, the required
confidence δ is known, this approach provides the
minimum number of samples needed to estimate
X̄ in the absence of privacy. Adding privacy to the
mix will make the task of approximating X̄ harder.
Regardless of the specific method used to enforce
privacy, the increased number of required samples
can be somewhat quantified.
Theorem 1. Let X ∼ ξ and consider Xn ∼ µ.
Let Q : Xn → R be a query and assume that
M : Xn → Xn is a privacy-enforcing mechanism
that induces a Markov Kernel denoted by K. Assume
that µ(| 1n

∑n
i=1 Xi − ξ(X)| ≥ η) ≤ exp(−2nη2). Then

one has that, in order to obtain the same accuracy
η with confidence δ after applying M to Xn, the
number of samples necessary n is such that for
every α ∈ [1,+∞]

n ≥ Dα(µK∥µ)− log(δ
α

α−1 )

2η2
. (5)

Taking the limit of α → ∞ leads to

n ≥
D∞(µK∥µ) + log

(
1
δ

)
2η2

. (6)

Proof. Our purpose is to verify how far is Q(M(Xn))
from X̄ = ξ(X) in probability. Hence, given that
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Xn ∼ µ and that M(Xn) ∼ µK we wish to bound
µK(|Q(M(Xn)) − X̄| ≥ η). Denoting with E =
{|Q(Y n)− X̄| ≥ η} for a given η > 0, the following is
true whenever µK ≪ µ:

µK(|Q(Y n)− X̄| ≥ η) = µK (1E) (7)

= µ

(
1E

dµK

dµ

)
(8)

≤ µ(|Q(Xn)− X̄| ≥ η)
α−1
α

· exp
(
(α− 1)

α
Dα(µK∥µ)

)
(9)

≤ exp(−2nη2)
α−1
α

· exp
(
(α− 1)

α
Dα(µK∥µ)

)
(10)

were Equation (9) follows from Hölder’s inequality
and Equation (10) follows from our assumption.
This implies that, if one wants Equation (10) to be
bounded by the confidence δ, denoting α−1

α = 1
β , the

following has to happen:

n ≥ Dα(µK∥µ)− log(δβ)

2η2
. (11)

Taking the limit of α → ∞, one obtains Equation (6).

This characterisation leads to an explicit analy-
sis of the so-called “privacy-accuracy” trade-off:
Dα(µK∥µ) measures how far is the distribution in-
duced by M from the original distribution µ. The
larger this quantity is, the more “private” M will be.
However, this will require more samples to estimate
X̄ with accuracy η and confidence δ. Equations (5)
and (6) show how the number of samples grows
as a function of η, δ and of our information-theoretic
measure of “privacy”. Another important observation
is that Dα(µK∥µ) ≥ 0 for every α > 0 and is
equal to 0 if and only if µK = µ. This is intuitive: if
the Mechanism is not altering the probabilities (and
thus, not enforcing privacy at all) one should fall
back on the non-private setting (cf. Equation (4))
and since Dα(µK∥µ) would be 0 for every α > 0
(including α = ∞) that would be the case. The
take-home message from this analysis is: given a
query Q and an acceptable level of accuracy η and
confidence δ for this query, when the samples are
drawn at random and observed without any pri-
vacy/obfuscation mechanism one can deduce (under
mild assumptions on Q) the minimum number of
samples required to achieve η and δ. The number
of samples will naturally grow whenever a privacy-
enforcing mechanism M is introduced (with a cor-
responding Markov Kernel K). From Theorem 1,
analysing the algorithm M, one can then deduce

(through Dα(µK∥µ)) the increase in the number of
samples as a function of the mechanism itself. Notice
that, even though Dα is increasing in α for a given
pair of measures, picking a smaller α will reduce
Dα however, it will also imply an increase in the
− log(δ

α
α−1 ) leading thus a trade-off between the two

quantities. This is also exemplified in Equation (6)
as D∞(µK∥µ) > Dα(µK∥µ) for every 1 < α < ∞
while the additive term − log(δ) is the smallest one
can achieve in the family − α

α−1 log(δ). The minimum
sample complexity for the query Q would thus be

min
1<α≤∞

Dα(µK∥µ)− log(δ
α

α−1 )

2η2
. (12)

Using Dα or other information measures to quantify
the information leakage is not new, and, as we have
seen in Section 1, it dates back to Shannon himself.
The Rényi’s divergences are strongly connected to
Differential Privacy [12]. Moreover, they have also
been used to provide a relaxation of DP itself [13].
For instance, in the context of Theorem 1 and
assuming ϵ-DP one can prove the following.
Theorem 2. Let Xn ∼ µ and let ν = µK with K
the Markov Kernel induced by a private mechanism
M. Assume that M is ϵ−DP. Then, given any input
vector, x̂n ∈ Xn and any α > 1 one has that

Dα(µK∥µ) ≤ (nϵ)
α

α− 1
·Dα(K(·|x̂n)∥µ). (13)

To conclude the discussion on the sample complexity
of private queries, let us state a more general setting.
The most general statements of concentration of
measures usually involve a sequence of iid random
variables Xn and smooth (generally Lipschitz,
bounded or with bounded differences) functions of
these random variables. Given that we are trying to
compute a function (query) of Xn and, considering
again that the best we can do is in the absence of
privacy, let us assume that Q is a separately convex
Lipschitz function. One can then show that if the
norm of the gradient of Q is such that ∥∇Q∥ ≤ 1

n ,
then the following holds true [11]:

µ(Q(Xn)− µ(Q(Xn)) ≥ η) ≤ exp

(
−nη2

2

)
. (14)

Like before, this represents the golden standard
i.e., the best convergence one can hope for in the
absence of privacy and for a given family of queries.
Enforcing privacy through M can only give worse
performances. Thus we can provide the following
result, along the lines of Theorem 1
Corollary 1. Assume that Q : Xn → R is a
separately convex Lipschitz function and such that
∥∇Q∥ ≤ 1

n . Let M : Xn → Xn be a privacy-
enforcing mechanism. Then one has that for every
α ∈ [1,+∞]

n ≥ 2(Dα(µK∥µ)− log(δ
α

α−1 ))

η2
. (15)
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3.3. What about fictitious data sets?

A common theme in the literature is the testing
of the performances of a private mechanism on
fictitious data sets. Several, more or less elaborated
models exist with this purpose. Usually, the data
is created using a vast number of samples and
considering, quite often, more or less correlated
Gaussian samples (e.g., [14, Section 5]). This could,
perhaps, represent a starting benchmark but it
cannot be the only one. For instance, given a
Gaussian Random variable with an unknown mean,
the problem of estimating the mean from random
samples has been amply studied [15; 16]. It is well
known that if the observations are noisy and the
noise is Gaussian itself, then the empirical mean
of the samples is a sufficient statistic and also the
optimal estimator. One can easily characterise the
optimal number of samples required to estimate the
mean with arbitrary accuracy and then compare it
with the (empirical) number of the samples needed
to estimate it, if the noise is constructed (or added
on top of the Gaussian) so that the observations are
“private”. However, when doing this type of validation
experiments, one incurs two dangers:

• access to an unlimited number of samples;

• concentration of measure for Gaussians and
(smooth) functions of Gaussians is, essentially,
as good as it gets.

Searching the concentration of measure or the esti-
mation theory literature, most of the settings that are
theoretically analysable consist in the concentration
of (Lipschitz functions, with bounded gradient or
differences, of) Gaussian random variables around
their mean/median. Moreover, said concentration is
usually of the fastest kind: exponential with the num-
ber of samples. This, together with the fact that one
can generate an unlimited number of samples, will
typically lead to an underestimate of the adequate
number of samples needed in practice. In turn,
this leads to non-representative performances of the
privacy-enhancing mechanism in real-world settings.
While a good starting point, synthetic data sets
should not be the only tool to compare different
mechanisms. This reinforces the need for standard
(and large enough) data sets to test the perfor-
mances of privacy-enhancing mechanisms.

4. CONCLUSIONS

The problem of the the privacy-accuracy trade-
off in open data was considered. Open data are
meant to be interrogated. Rendering them too
private leads to terrible performances in terms of
queries. Researchers need to be able to test the
performances of their algorithms as they try to

ensure both the accuracy of the queries and privacy.
In order for this to happen, the creation of benchmark
data sets, similarly to MNIST in Machine Learning, is
envisioned. A preliminary theoretical analysis of the
characteristics of such a data set is presented with
an argument on why fictitious samples are generally
not representative enough of the real performances
of the algorithms.
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